当前位置:首页 > 励志创业 > 正文内容

人工智能创新是什么创新?

2024-06-11 01:55:05励志创业1

人工智能的用例其实还有很多,事实上,在人工智能发展的近四十年时间里,一直有五大核心要素在支撑整个行业,连接各个技术节点。人工智能应用程序吸收海量数据,对周围环境做出反应,通过学习提升适应度、实现更好的表现,同步服务系统和用户。

人工智能创新是什么创新?

一、强化吸收数据

基于数据强化的人工智能系统需要和海量数据进行交互,他们通常会高速获取数十亿量级的信息记录。对于人工智能系统来说,实时吸收数据是它们必备的技能之一,此外还需要获取不间断的流媒体数据(绝大多数都是小数据模块,比如物联网传感器评估)和批量数据(一些大数据模块,比如系统数据库内的历史数据表)。

二、自适应性

利用机器学习技术,自适应的应用程序可以进行自我优化。随着时间的推移,他们会分析工作处理的结果,然后学习如何做的更好。机器学习的工作流程需要数据科学家进行模型选择,这涉及到一整套迭代流程,包括特征工程、算法选择、以及参数调整。开发人员之后会把机器学习模型部署到应用程序内部,再导入新数据,该模型会进行数据分类,在按照分类分析处理行为。最后,这些部署了机器学习的应用程序会“回顾”自己的处理结果,再利用这些结果数据重新进行训练。

三、反应性

现代人工智能系统可以根据周围环境情况,实时做出变化反应。传统应用程序更多的是基于批处理模式——你安排应用程序执行任务,它们运行,然后存储处理结果,最后关闭程序。而人工智能应用程序则会不断监测他们的输入(通常来自于各种流媒体数据平台),然后根据实际情况执行操作,人工智能程序会自动调用程序、规则和行为,然后自己做出决策。简单的说,人工智能系统会一直处于运转之中,然后根据不同的输入做出反应。

四、前瞻性

许多人工智能系统不仅仅具备反应性,他们可以规划未来,执行最佳的行动计划。事实上,系统规划、游戏规划、甚至是语言分析系统,都需要一个前瞻性的解决方案。这些系统必须要具备根据不同场景(情况)随时切换输入数据的能力。举个例子,人工智能会及时获取天气预报数据,并以此分析是否会延误来自中国的海运或航运发货,一旦发货延迟,是否会对美国的制造进度计划产生影响,是否需要重新优化生产计划。

五、并发性

人工智能系统,其实就像传统应用程序一样,必须支持同时处理多个用户或多个系统。通过在操作系统和数据库领域里开发分布式系统,人工智能系统需要不断确保执行传统数据库事务的四要素原则(ACID):原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、以及持久性(Durability)。

本网站文章仅供交流学习 ,不作为商用, 版权归属原作者,部分文章推送时未能及时与原作者取得联系,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除.

本文链接:http://www.lzsty.com/lzcy/107104.html